Comment intégrer la thérapie manuelle ostéopathique dans une prise en charge Biopsychosociale en comprenant la nociception, la douleur et la neuroplasticité.

« Il n’y a aucun doute sur le fait qu’il se passe des choses lors d’une manipulation et que l’on se sente mieux après.

C’est bien de théoriser sur l’effet physiologique des manipulations

Mais quand nous avons une quantité énorme de preuves qui réfutent le mécanisme ou la justification des manipulations, il serait peut-être judicieux d’arrêter de véhiculer ces théories.

Cela ne veut pas dire qu’il faut arrêter de manipuler, cela veut juste dire qu’il faut explorer d’autres pistes expliquant les mécanismes de ces effets. »

Dr. Gregory Lehman

Cet article de blog est un résumé commenté de ces 3 articles dont je vous recommande très chaudement la lecture :

  • Fryer (2017) Integrating osteopathic approaches based on biopsychosocial therapeutic mechanisms. Part 1: The mechanisms. IJOM
  • Fryer (2017) Integrating osteopathic approaches based on biopsychosocial therapeutic mechanisms. Part 2: Clinical Approach. IJOM
  • Pelletier (2018) Nociception, pain, neuroplasticity and the practice of Osteopathic Manipulative Medicine. IJOM

Le billet de blog s’organisera de la façon suivante :

  • Les problèmes du modèle de causalité linéaire structurel biomécanique dans la prise en charge de la douleur ;
  • Les mécanismes bio-psycho-sociaux de la douleur ;
  • Les potentiels mécanismes thérapeutiques de la Thérapie Manuelle Ostéopathique ;
  • Proposition d’une approche clinique qui permettrait d’intégrer la manipulation dans un modèle BPS.

La thérapie manuelle en général, a construit par tradition, sa compréhension des troubles musculosqueletiques, sur un paradigme « pathologico-biomécanico-structurel » de causalité linéaire entre :  Structure défaillante –> Douleur.

L’ostéopathie plus particulièrement possède cet héritage biomédical en ayant développé le traitement manipulatif ostéopathique sur un modèle biomécanique. En 1891, quand A.T Still nommait officiellement l’ostéopathie cette « nouvelle  science de la santé » il déclarait ce même jour que “Plusieurs maladies incurables par la médecine, sont causées par une dyslocation complète ou partielle des os du cou, du thorax, de la colonne ou des membres…et ne seront sérieusement soignés qu’une fois les os faisant défauts seraient ajustés ».(1)

Et bien que l’ostéopathie ait été nourrie dès le début d’une vision spinoziste de l’être humain (le corps est une unité physiologique corps-âme-esprit), les ostéopathes sont restés « bloqués » dans ce paradigme de causalité linéraire : « Pour soigner le patient de sa pathologie, il faut trouver la CAUSE (trouver et corriger la lésion primaire/dysfonction somatique) »

LESION PRIMAIRE.png

Et les textes ostéopathiques décrivent très bien les techniques manipulatives en terme biomécanique perturbé ou de perte de mouvement aussi bien pour le squelette axial ou appendiculaire (2-4) mais aussi pour les articulations du crâne (5-6).

Et nous savons très bien expliquer la douleur d’une personne avec des termes pathologiques et biomécaniques, mais beaucoup moins avec des explications neurophysiologiques ou bien psychosociales.

  1. Les problèmes du modèle biomédical de causalité linéaire structurel biomécanique dans la prise en charge de la douleur.

On sait maintenant depuis plus de 15 ans que les traitements qui s’appuient sur un modèle biomédical (trouver la cause pour traiter le problème) échouent tous, que ce soit pour décrire, prédire ou traiter les troubles musculosqueletiques chroniques (7)

En 2011, dans son article « La chute du modèle Posturo-Structuro-Biomécanique (PSB) »  E.Lederman (8) démontrait après avoir fait une revue des différentes publications sur le sujet que :

  • Les asymétries et autres « imperfections » mécaniques ou de contrôle moteur étaient la normalité et non la pathologie ;
  • Que l’anatomopathologie ne déterminait pas la symptomatologie ;
  • Qu’il n’y avait pas de relation entre des facteurs PSB préexistant et la lombalgie ;
  • Que la correction de ces facteurs PSB n’améliorait pas la prise en charge de la lombalgie ;
  • Que ces conclusions pouvaient se généraliser à tous les troubles musculosqueletiques.

Et depuis les 10 dernières années toutes les publications dans la recherche ont confirmé les conclusions avant-gardistes de Lederman : les « anomalies » structurelles, les « dysfonctions » mécaniques n’expliquent pas la douleur (pour la tonne de références voir le post La douleur n’est pas synonyme de lésion tissulaire), d’un point de vue épidémiologique elles ne sont ni associées à la douleur, ni à la santé, ni ne prédisent l’apparition de la douleur (9), et la « correction »  de ces « dysfonctions » n’apporte pas plus d’amélioration qu’un placebo (10).

G. Fryer dans un récent article intitulé « La dysfonction somatique : une énigme ostéopathique » conclue que : « Même si le concept de dysfonction somatique peut avoir une utilité en tant que modèle pour interpréter les signes diagnostiques palpatoires et aider le raisonnement clinique pour un traitement manipulatif (…) son utilisation comme outil diagnostique dans le milieu de la pratique devrait être abandonnée. » (11)

En définitive, lorsque le traitement ne cherche qu’à normaliser les facteurs tissulaires dans la prise en charge de la douleur, il ne se limite qu’à une seule composante biologique de la douleur.  Or ces facteurs biologiques interagissent avec une multitude de facteurs psycho-sociaux.

C’est pour cela que le modèle biopsychosocial (BPS) intègre donc au sein du modèle biomédical (BM), les facteurs psychologiques et les interactions sociales.

Pour l’instant bien que le modèle BPS offre des résultats modérés dans le traitement de la douleur chronique (12-13), c’est ce modèle qui nous donne les meilleurs facteurs prédictifs (14) de passage à la chronicité et les meilleurs facteurs pronostics de l’évolution de la douleur (15) .

Et en dépit de toutes ces découvertes BPS, les patients comme les praticiens de santé continuent de concevoir la douleur sous un aspect BM (7).

  1. Les mécanismes bio-psycho-sociaux de la douleur

2.1 Le codage prédictif et le modèle de l’organisme mature (16-17-18)

Dans n’importe quel contexte de blessure, avant même que nos nocicepteurs soient stimulés, afin d’économiser du temps, le système nerveux établi des scenarii possibles.

Pour cela il fait une prédiction à priori sur ce qui pourrait se passer à postériori dans nos tissus en prenant en compte le contexte environnemental (psychosocial).

Prediction MOM1.png

Ensuite le stimulus est comparé à différents endroits du système nerveux (périphérique et central) avec la prédiction.

Prediction MOM 2.png

Après comparaison et analyse de l’erreur de prédiction entre le scenario prédit et les entrées sensorielles , la douleur émergera comme réponse la plus cohérente pour nous inviter à modifier notre comportement et notre contexte physiologique.

Prediction MOM 3.png

C’est pour cela que si vous vous fracturez la cheville en jouant au foot sur une plage en été, vous ferez non seulement l’expérience d’une douleur différente que si vous êtes seul dans les montagnes rocheuses en train d’essayer d’échapper à un grizzli, mais surtout votre comportement ne sera pas tout à fait le même.

Maintenant si la douleur nociceptive aigüe (impliquant l’activation des nocicepteurs) et la douleur persistante nociplastique, partagent des mécanismes communs, ils ne sont pas mis en jeu de la même façon, et il existe des changements neurophysiologiques notables.

2.2 Mécanismes de douleur nociceptive :

Dans la douleur nociceptive aigüe à la suite d’une blessure (ou inflammation), l’activation des nocicepteurs va participer à l’inflammation neurogénique dans les tissus (sensibilisation périphérique). Celle-ci permet de protéger la zone blessée le temps de la réparation tissulaire. Pendant cette période la corne dorsale de la moelle crée un phénomène de renforcement synaptique pour amplifier la zone de protection autour de la blessure (sensibilisation centrale). L’expérience multidimensionnelle de la douleur active des aires corticales : les aires sensori-discriminatives qui gèrent la localisation, le type et l’intensité et les aires cognitivo-affectivo-motivationelles qui gèrent l’expérience émotionnelle et désagréable ainsi que le comportement par rapport à la douleur (figure ci-dessous).

Pelletier Nociception.png

Traduit et modifié de R. Pelletier et al. 2018 / International Journal of Osteopathic Medicine

En fonction de l’analyse prédite de la situation, le cerveau fait émerger une réponse cohérente qui invite l’être humain à modifier sa physiologie et son contexte par rapport à cette blessure. C’est l’expérience de la douleur qui peut être modulée par différents contextes biologiques (fatigue, sommeil immunité…) et psychosociaux (environnements, stress, peur, dépression, colère…)

Une fois la blessure guérie, les phénomènes de sensibilisation centrale et périphérique disparaissent et la vie reprend son cours.

De temps en temps, certains phénomènes biologiques restent en place (facilitation descendante, sensibilisation centrale, réorganisation corticale…) pour plusieurs raisons : génétiques, contextuels, psychologique, sociales…Et c’est là que la douleur persistante s’installe.

Mécanismes de douleur nociplastique :

Changements chroniques.png

Traduit et modifié de R. Pelletier et al. 2018 / International Journal of Osteopathic Medicine

Dans la douleur nociplastique on voit que le système nerveux modifie son organisation (figure ci-dessus) :

Au niveau de la moelle le renforcement synaptique s’amplifie et des changements structurels s’opèrent au niveau de la corne dorsale de la moelle, diminuant les seuils d’excitabilité des neurones.

Au niveau du tronc cérébral, le mode d’inhibition descendante glisse vers un mode de facilitation descendante de la nociception

Au niveau cortical les aires sensori-discriminatives qui sont normalement plus actives dans la douleur nociceptive aigüe, deviennent moins actives et se flouttent (amnésie sensori-motrice) et le cerveau active plus les aires cognitivo-affectivo-motivationelles impliqués dans la douleur. Le système nerveux autonome (SNA) est impliqué dans le developpement et le maintient des douleurs persistantes. Dans les douleurs persistantes lombaires ou cervicales (37-38) il existe un déséquilibre du SNA: les patients se présentent avec une augmentation de l’activité sympathique et une diminution de l’activité parasympathique.

Les signes de douleur nociceptive et de douleur nociplastique ne sont pas les mêmes car le système nerveux n’est pas sensibilisé de la même façon (19), dans la douleur nociplastique, il y aura de l’hyperalgésie et allodynie secondaire, c’est à dire une réponse douloureuse à la stimulation non nociceptive. Et ces changements du système nerveux devenant persistants, peuvent poser des problèmes majeurs aux patients et aux ostéopathes, surtout si les deux sont convaincus que la source des symptômes est due à une lésion tissulaire qui nécessite un traitement biomécanique.

  1. Les potentiels mécanismes thérapeutiques de la TMO

Les traitements manuels ostéopathiques peuvent influencer une multitude de facteurs biologiques et psychosociaux pour aider les patients souffrant de douleur nociceptive ou nociplastique. Eyal Lederman (20) décrit les effets du traitement ostéopathique comme se produisant sur trois niveaux : tissulaire, neurologique et psychologique.

Au niveau tissulaire, les données montrent les effets suivants de la thérapie manuelle :

D’un point de vue tissulaire :

  • Augmentation de l’amplitude globale et inter-segmentaire à court terme (probablement due à une réponse neurophysiologique) ;
  • Changement transitoire de la pression intra-articulaire (phénomène de cavitation/tribonucléation)
  • Pas de correction de la posture ;
  • Pas de changement des propriétés de viscoélasticité tissulaire (muscles, fasciae, ligaments) ;
  • Pas de modification biomécanique positionnelle articulaire.

G.Fryer fait justement remarquer dans sa revue (21) des effets physiologiques que l’on a beaucoup trop mis l’emphase sur des effets biomécaniques tissulaires de la thérapie manuelle alors que les données expérimentales semblent contredire ces hypothèses.

D’autant plus que la littérature montre  pour l’instant que ces éléments tissulaires anatomique-biomécaniques ne sont peu ou pas impliqués dans la douleur.

D’un point de vue biologique : aide à la réparation tissulaire

  • Diminution des cytokines pro-inflammatoires ;
  • Aide à la réorganisation des fibroblastes par mécanotransduction ;
  • Amélioration du drainage lymphatique et de la réponse immunitaire.

Les données expérimentales ne sont pas encore assez solides pour affirmer ces effets mais certaines études en cours sont prometteuses.

Effets neurophysiologiques à court terme (21-22-23-24-25-26) :

  • Modulation de la douleur ;
  • Diminution de la sensibilité à la pression ;
  • Diminution de la perception de raideur et de tension ;
  • Diminution de la mécanosensibilité neurale ;
  • Modification du système nerveux autonomes non spécifique de l’endroit manipulé : les manipulations et mobilisation rachidiennes auraient un effet sympatico excitateur, le TMO, les manipulations douces et cranienne…un effet parasympathique ;

En sachant qu’en condition expérimentale les manipulations sont aussi efficaces sur la douleur sans avoir besoin :

  • D’être spécifique de l’endroit manipulé ;
  • De choisir la technique ;
  • De respecter la biomécanique de la zone ;
  • De faire un effet de cavitation ;
  • D’être effectué par un praticien expert certifié avec des années d’expériences. (Rassurez-vous étudiants néophytes, vos mains font autant de bien que celles de vos profs !!!)

Les auteurs des différentes revues, concernant les effets sur la sensibilité et la douleur, concluent tous que les mécanismes mis en jeu, s’expliqueraient par des effets non spécifiques impliquant les aires cognitivo-affectivo-motivationnelles et le tronc cérébral (Analgésie placebo, inhibition descendante, diminution de la sommation temporelle…).

D’un point de vue neurophysiologique sur la neuroplasticité

 On sait que chez les patients lombalgiques et cevicalgiques chroniques, sont associés des pertes de contrôle moteur, des troubles de la proprioception ainsi qu’une perte de discrimination. Cette amnésie sensori-motrice est visible au niveau du système central et se traduit par un « flouttage des cartes corticales » à l’IRM fonctionnel (voir le post sur l’autoperception)

Cliniquement les manipulations améliorent l’intégration sensorimotrice

  • Amélioration de la proprioception
  • Amélioration du contrôle moteur

Des études expérimentales  (28-29-30-31-32) semblent confirmer électrophysiologiquement ces résultats cliniques : diminution de l’excitabilité du cortex moteur, diminution du réflexe H, diminution des potentiels moteurs évoqués, diminution des potentiels somesthésiques évoqués.

D’un point de vue psychosocial (21-22) :

Il s’agit des effets non spécifiques attribués au contexte positif de la prise en charge qui agissent au niveau du cortex préfrontal et les aires limbiques du patient (27).

Chez les patients présentant des douleurs persistantes, une revue systématique (39) a montré que les manipulations ostéopathiques ont une influence sur certains facteurs psychosociaux  comme l’anxiété, la peur-évitement, la qualité de vie…

Ces effets non spécifiques sont influencés par le contexte de la consultation, les expériences passées, les attentes, les valeurs, les croyances, la crédibilité du traitement et surtout l’interaction patient-praticien (voir le billet de blog sur comment  améliorer l’efficacité de vos techniques manuelles en étant conscient de l’effet placebo).

Le contexte d’application du TMO a un impact sur les résultats du traitement similaire à celui d’autres formes de thérapies complémentaires et alternatives et peut être fragmenté en différents aspects du traitement :

  • La réponse du patient à l’observation et à l’évaluation du praticien ;
  • L’administration d’un rituel thérapeutique associé au traitement ;
  • L’alliance thérapeutique patient-praticien.

Fryer 2017 et Pelletier 2018, proposent (figure ci-dessous) pour augmenter l’efficacité du TMO et agir sur les aires corticales Cognitivo-Affectivo-Motivationelles de :

  • Rassurer et éduquer le patient ;
  • Reconceptualiser les croyances et les comportements maladaptatifs ;
  • Diminuer la peur et l’anxiété (cibler la kinésiphopie et le catastrophisme) ;
  • Redonner confiance au mouvement (certaines études montrent que les patients lombalgique ont moins peur de bouger après avoir été manipulé);
  • Encourager le patient à l’activité et l’autonomiser.

Pelletier TMO neurophsyio.pngTraduit et modifié par L. Fabre à partir de :  R. Pelletier et al. 2018 / Bialosky et al 2009 / Fryer G. 2017

 

En résumé la Thérapie Manuelle Ostéopathique (figure ci-dessous)  par l’intermédiaire d’une stimulation mécanique provoque des réponses majoritairement non spécifiques du système nerveux  qui :

  • Redonne des options de mouvements (amplitude, neuroplasticité)
  • Désensibilise le système nerveux : système nerveux autonome, système nerveux périphérique et système nerveux central
  • Redonne confiance au mouvement
  • Ne CORRIGE RIEN !!!

Désensibilisation.png

Comment intégrer donc cet outil manipulatif dans un contexte BPS ?

  1. Approche clinique permettant d’intégrer la manipulation dans un modèle BPS 

Dans une conférence dispensée sur le modèle BPS (voir figure ci-dessous),  Jerry Draper-Rodi prend l’exemple d’un patient présentant une lombalgie traumatique à la suite d’une entorse rachidienne survenue dans un contexte aigüe. Durant cette phase la blessure tissulaire et l’inflammation expliquent la douleur (première flèche en pointillé).

Si cette douleur persiste, entretenue par une sensibilisation centrale maintenue dans le temps, elle pourra fluctuer et pourra revêtir plus tard les mêmes caractéristiques que lors de sa première apparition (deuxième flèche en pointillé), sauf que la blessure sera guérie.

Jerry aigue chronique.png

Dans le premier épisode, les facteurs tissulaires sont impliqués dans la symptomatologie, alors que dans le second épisode ce sont plus les mécanismes neurologiques qui sont en cause et non plus les facteurs tissulaires.

Pour ces deux épisodes de lombalgies qui se ressemblent, alors que les mécanismes biologiques impliqués diffèrent selon les différents types de douleur, comment peut-on justifier d’utiliser les mêmes outils manipulatifs pour traiter le patient selon le même modèle ?

Pour cela Gary Fryer propose une approche clinique intéressante qui tient compte des mécanismes impliqués dans la douleur. Il rappelle tout d’abord les différents mécanismes sur lesquels on peut agir en thérapie manuelle ostéopathique (figue ci-dessous) :

Fryer TMO BPS.png

Dans une approche BPS, il est intéressant de reconnaître les différents facteurs de sensibilisation afin de comprendre quels facteurs l’intervention thérapeutique va cibler.

On peut reprendre les différents facteurs biologiques impliqués dans la douleur que l’on peut représenter en : facteurs tissulaires, facteurs neurologiques et facteurs psychosociaux.

Quand les facteurs tissulaires sont sensibilisés (blessure, inflammation, remodelage…) ceux-ci envoient des informations au système nerveux (on parle d’influences « bottum-up » ou ascendantes (de bas en haut) et influencent ainsi les facteurs neurologiques (sensibilisation centrale, activation sympathique, facilitation…).

Ces facteurs neurologiques sont aussi sous influences des facteurs psycho-sociaux (cortex préfrontal : peur, croyances, contexte..), que l’on appelle « top-down » (ou descendantes).

Les facteurs tissulaires influencent aussi les facteurs psychosociaux (de Bas en Haut), et les facteurs psychosociaux influencent les facteurs tissulaires (de Haut en Bas), tout transitant par le système nerveux.

Les données de la littérature nous montrent que dans toute expérience de douleur les influences de Haut en Bas ont souvent plus d’importance que les influences de Bas en Haut.

Et l’ostéopathe pourrait avoir à l’esprit l’intervention thérapeutique en ciblant les différents facteurs :

  • Sur les facteurs tissulaires : le effets plausibles d’aide à la réparation tissulaire, au drainage lymphatique et à l’amélioration de l’amplitude articulaire ;
  • Sur les facteurs neurologiques les effets de désensibilisation du système nerveux, la modulation de douleur et l’amélioration de l’intégration sensori-motrice ;
  • Sur les facteurs psychosociaux : il s’agit la de compétence qui ne relèvent plus uniquement de la thérapie manuelle, mais de compétences communicationnelles concernant la gestion globale d’un patient qui souffre : le rassurer, le guider vers une compréhension de son problème pour lui permettre de se sentir plus fort et plus confiant afin qu’il retrouve de l’autonomie et du mouvement.

En fonction de la situation clinique, l’intervention thérapeutique s’adaptera aux différents mécanismes mis en jeu.

Prise en charge de la douleur nociceptive aigüe :

Les caractéristiques cliniques à forte valeur diagnostique de la douleur nociceptive sont les suivantes (33-34-35)  :

  • La douleur est localisée (+/- Douleur référée plus proximale que distale) ;
  • Elle peut être lié à une lésion tissulaire (blessure, inflammation);
  • Il y a une relation cohérente +/- proportionnée (calmant/aggravant) à la mise en charge/décharge des tissus ;
  • Il y a une relation cohérente entre la stimulation d’une  structure anatomique et la reproduction de la douleur ;
  • Il peut y avoir des signes de sensibilisation périphérique : Hyperalgésie/allodynie PRIMAIRE mécanique/thermique ;

Dans la situation d’un patient ayant une présentation clinique de douleur nociceptive aigüe (résumé ci dessous), la thérapie manuelle viserait à aider la réparation tissulaire (en cas de suspicion de blessure) et à désensibiliser les processus nociceptifs le temps de la guérison.

Dans le cas d’une atteinte tissulaire (inflammation, blessure…) la mise en charge et le gain d’amplitude se feront de façon progressive (technique articulaire, étirement, mouvements actifs…) pour s’adapter au niveau de réparation et de remodelage.

Les techniques manuelles passives pourront redonner confiance au mouvement et moduler la douleur.

Combinées avec du rassurement, de l’éducation à la douleur, et de l’encouragement, elles pourront aider le patient à retrouver une activité physique avec des mouvements relachés et fluides.

Fryer nociceptif.png

Prise en charge de la douleur nociplastique chronique :

Voici les signes à forte valeur diagnostique, c’est un mixte du cluster de Smart (4 critères) avec les critères de Nijs (3 critères) qui se recoupent (33-34):

  • Expérience de douleur disproportionnée à la nature dutraumatisme, non-mécanique, imprévisible
  • La douleur est diffuse (à une région, un membre, un côté ) et/ou en miroir et/ou se déplace et/ou se généralise
  • On retrouve des facteurs psychosociauxinadaptés (les croyances qui font flipper, catastrophiser, qui font croire que l’on est fragile, les émotions négatives (dépression, colère, peur), la faible autoefficacité)
  • On retrouve des signes Allodynie /hyperalgésie secondaire en dehors de la zone segmentaire de la nociception

Dans la situation d’un patient ayant une présentation clinique de douleur nociplastique, l’intervention thérapeutique devrait se focaliser d’abord sur : le rassurement, réduire la peur et l’anxiété, comprendre et recadrer les croyances et comportements maladaptés à la situation clinique, encourager le mouvement, la reprise d’activité et l’autonomie.

La thérapie manuelle passive pourra aider en se focalisant sur : l’aide au mouvement, la modulation de la douleur et l’amélioration sensorimotrice, mais uniquement comme adjuvant de la stratégie principale qui sera la gestion des facteurs psychosociaux.

fryer nociplastique.png

La Thérapie Manuelle Ostéopathique ne pourra en aucun cas être le seul objectif thérapeutique: le patient n’est pas un objet que l’on corrige à qui on débloque des articulations mais bien un être humain qui souffre avec qui on interagit pour débloquer une situation (métaphore empruntée à Marco Gabutti).

Dans cette situation il sera crucial aussi  d’être cohérent avec le message explicatif que l’on peut apporter en thérapie manuelle passive et je vous invite à relire à ce sujet les billets de blog  sur  « Croyances et Thérapie manuelle » ainsi que celui sur « La prise en charge de la lombalgie » pour comprendre que nos mots sont importants pour soulager leur maux.

Si vous souhaitez comment mieux gérer l’outil manipulatif dans un cadre BPS :

Gary Fryer l’auteur des 2 articles résumés propose des séminaires sur l’intégration des techniques myotensives dans un cadre BPS.

Recherche et Pratique ( Jerry, Marco et moi-même) organisons des séminaires pour mieux comprendre la douleur, et accompagner le patient vers l’autonomie en intégrant le contexte psychologique et social.

Et si vous voulez prendre en charge les douleurs neuropathiques (le seul sujet non traité par les articles de G. Fryer car gestion plus particulière)  avec une approche BPS et neurodynamique c’est ici.

  1. Annual address delivered by A.T. Still D.O. to the students of osteopathy. Weekly Graphic. January 16, 1891.
  2. P.E. Greenman, Principles of manual medicine, third ed., Lippincott William & Wilkins, Philadelphia, 2003.
  3. E.L. DiGiovanna, S. Schiowitz, D.J. Dowling, An osteopathic approach to diagnosis and treatment, third ed., Lippincott William & Wilkins, Philadelphia, 2005.
  4. E.R. Isaacs, M.R. Bookhout, Spinal manipulation, sixth ed., Butterworth – Heinemann, Oxford, 2001.
  5. Sutherland W. The cranial bowl: a treatise relating to cranial articular mobility, cranial articular lesions and cranial techniques. Mankato: Co FP; 1939.
  6. Kern P. Cahier d’ostéopathie crânienne. 100 Techniques pour corriger les dysfonctions crâniennes. 2018
  7. Foster NE, et al. Understanding the process of care for musculoskeletal conditions why a biomedical approach is inadequate. 2003. Br Soc Rheumatology.
  8. Lederman E. The fall of the postural-structural-biomechanical model in manual and physical therapies: exemplified by lower back pain. J Bodyw Mov Ther 2011;15:131e8.
  9. Mirtz et al 2009 Chiropractic & Osteopathy 2009,17:13
  10. Rubinstein SM, et al. Spinal manipulative therapy for chronic low-back pain: an update of a Cochrane review.Spine (Phila Pa 1976) 2011;36(13): E825e46.
  11. Fryer G, Somatic dysfunction: An osteopathic conundrum, International Journal of Osteopathic Medicine (2016), http://dx.doi.org/10.1016/j.ijosm.2016.02.002
  12. Pincus T, et al. Twenty-five years with the biopsychosocial model of low back pain-is it time to celebrate? A report from the twelfth international forum for primary care research on low back pain. Spine (Phila Pa 1976) 2013;38(24): 2118e23.
  13. Vibe Fersum K, O’Sullivan P, Skouen JS, Smith A, Kvåle A. Efficacy of classifica- tion-based cognitive functional therapy in patients with non-specific chronic low back pain: a randomized controlled trial. Eur J Pain. 2013;17:916–928.
  14. Chou R, Qaseem A, Snow V, Casey D, Cross Jr. JT, Shekelle P, Owens DK. Diagnosis and treatment of low back pain: a joint clinical practice guideline from the American College of Physicians and the American Pain Society [with consumer summary]. Ann Intern Med 2007;147(7):478–91.
  15. Draper-Rodi J, Vogel S, A. Bishop (2018) Identification of prognostic factors and assessment methods on the evaluation of non-specific low back pain in a biopsychosocial environment: A scoping review. IJOM
  16. Tabor A. et Burr C. Bayesian Learning Models of Pain: A Call to Action Current Opinion in Behavioral Sciences 2019, 26:54–61
  17. Geuter et al. Functional dissociation of stimulus intensity encoding and predictive coding of pain in the insula eLife 2017;6:e24770. DOI: 10.7554/eLife.24770
  18. Gifford LS 2014 Aches and Pain. Cornwall, WordPress.
  19. J. Nijs, B. Van Houdenhove, R.A.B. Oostendorp, Recognition of central sensitization in patients with musculoskeletal pain: application of pain neurophysiology in manual therapy practice, Man Ther 15 (2010) 135–141.
  20. E. Lederman, The science and practice of manual therapy, second ed., Elsevier Churchill Livingstone, Edinburgh, 2005.
  21. Fryer (2017) Integrating osteopathic approaches based on biopsychosocial therapeutic mechanisms. Part 1: The mechanisms. IJOM
  22. Pelletier (2018) Nociception, pain, neuroplasticity and the practice of Osteopathic Manipulative Medicine. IJOM
  23. Bialosky, J.E., Bishop, M.D., Price, D.D., Robinson, M.E., George, S.Z., 2009. The mechanisms of manual therapy in the treatment of musculoskeletal pain: a comprehensive model. Manual Therapy ; 14: 531-538
  24. Coronado RA, Gay CW, Bialosky JE, Carnaby GD, Bishop MD, George SZ. Changes in pain sensitivity following spinal manipulation: a systematic review and meta-analysis. J Electromyogr Kinesiol 2012;22:752-767.
  25. Lascurain et al 2016. Mechanism of Action of Spinal Mobilizations A Systematic Review. SPINE Volume 41, Number 2, pp 159–172
  26. Honoré et al. The regional effect of spinal manipulation on the pressure pain threshold in asymptomatic subjects: a systematic literature review Chiropractic & Manual Therapies (2018) 26:11
  27. Benedetti F, et al. Neurobiological mechanisms of the placebo effect. J Neurosci 2005;25(45):10390e402.
  28. Haavik-Taylor, B. Murphy / Clinical Neurophysiology 118 (2007) 391–402
  29. Fryer G, Pearce AJ. Journal of Manipulative and Physiological Therapeutics. 2012;35(2):86-93.
  30. Fryer G, Pearce AJ.. J Bodyw Mov Ther. 2013;17(4):440-447.
  31. Palmgren PJ, Sandstrom PJ, Lundqvist FJ, Heikkila H. J Manipulative Physiol Ther. 2006;29(2):100-106
  32. Gay CW et al. J Manipulative Physiol Ther 2014;37:614-627
  33. Nijs J. et al. Low Back Pain: Guidelines for the Clinical Classification of Predominant Neuropathic, Nociceptive, or Central Sensitization Pain. Pain Physician: May/June 2015; 18:E333-E46
  34. Smart KM, Blake C, Staines A, Doody C. Clinical indicators of “nociceptive”,‘peripheral neuropathic’ and ‘central’ mechanisms of musculoskeletal pain. A Delphi survey of expert clinicians. Manual Therapy 2010; 15:80-87.
  35. Schaffer A. Classification of low back-related leg paindA proposed patho-mechanism-based approach Manual Therapy 14 (2009) 222e230
  36. Hallman DM, Ekman AH, Lyskov E. Changes in physical activity and heart
  37. rate variability in chronic neck-shoulder pain: monitoring during work and leisure time. Int Arch Occup Environ Health 2014;87(7):735e44.
  38. Kalezic N, et al. Physiological reactivity to functional tests in patients with chronic low back pain. J Musculoskelet Pain 2007;15(1):29e40
  39. Saracutu M et al 2017 The effects of osteopathic treatment on psychosocial factors in people with persistent pain: A systematic review. IJOM.

Une vision métaphorique du système nerveux

 

Ce post est un recueil de métaphores (élaborées par Diane Jacobs) sur le fonctionnement de la nociception au sein du système nerveux.

Je vous retranscris ma réflexion, inspirée d’une anecdote provenant de son livre (que je recommande), et de l’un de ses posts FB.

En introduction, je vous invite à regarder la vidéo suivante qui montre le réflexe de retrait (réflexe polysynaptique de défense) chez un poisson décapité.

On peut constater ici que ce réflexe est entièrement médié par la moëlle épinière, et qu’il peut fonctionner avec un système nerveux central décérébré.

 

D�veloppement du syst�me nerveux � 36 joursLa moëlle épinière fait partie intégrante du système nerveux central. Elle peut être considérée de façon simple comme la « queue du cerveau » qui descend dans le corps.

D’un point de vue phylogénétique, c’est aussi la partie la plus archaïque du système nerveux central. Elle est destinée à prendre le contrôle des informations pour « protéger » le corps.

Les parties embryologiques qui gouvernent l’inhibition descendante et le contrôle moteur sur la moelle (diencéphale, télencephale) sont plus récentes dans l’évolution.

En fait, la majeure partie du travail que semble faire le cerveau est d’ « inhiber » sans cesse le comportement incessant de la moelle épinière, que ce soit :

  • Les efférences motrices inappropriées ;
  • Les afférences nociceptives sans importance.

 

Avez-vous déjà posé la main sur une plaque chauffante sans le faire exprès ?

Votre moëlle épinière vous a fait retirer votre main avant même que celle-ci soit brûlée.

 

Vous avez certainement retiré votre main avant même que « vous » (la partie consciente de votre cerveau) n’ayez « ressenti » (perception et réaction) la « chaleur » (l’environnement).

En d’autre termes, avant même que la partie consciente de votre cerveau ait perçu et réagi à l’environnement.

La moëlle va plus vite que la perception.

 

Chez la plupart d’entre nous qui avons un cerveau et une moëlle normalement constitués :

  • Le moëlle gère au mieux les réflexes de retrait en réponse aux afférences nociceptives ;
  • Le cerveau est capable de percevoir les résultats de l’efférence motrice médiée par la moelle épinière. Il doit contrôler cette efférence, sinon nous serions comme ce poisson à chaque information nociceptive.

 

Pour ce faire, soit le cerveau :

  • Exacerbe l’afférence nociceptive (sensibilisation centrale) ou empêche son inhibition pour produire la douleur ;
  • Inhibe la réponse motrice de la moëlle (contrôle moteur).

 

Métaphore de la plage et de l’océan 

Voici une façon de concevoir un système nerveux central « non monolithique » :

Le travail de la moëlle est d’augmenter la nociception quoiqu’il arrive (en transformant des vagues ordinaires en vagues plus importantes), et le cerveau y répond par la modulation descendante (en laissant un peu d’eau sur la digue parfois, mais en gardant la digue en bon état à tout moment).

Plage ocean system nerveux

L’autre métaphore phylogénétique est de dire qu’au cours de l’évolution de l’océan et de la plage, si la moëlle épinière (l’océan) a évolué avec le temps pour créer des grosses vagues d’information, alors le cerveau a évolué pour augmenter la pente de la plage pour calmer ces mêmes vagues.

 

La nociception est à l’inhibition cérébrale ce que l’océan est à la plage. En temps normal, elle est inhibée et tout va bien.

La moëlle épinière (océan) tente d’augmenter la taille des vagues, c’est son rôle.

Celui du cerveau consiste, chaque fois qu’il le peut, à inhiber la nociception, en empêchant les vagues avant qu’elles ne deviennent trop importantes.

Implications thérapeutiques pratiques

Nous avons tendance, en tant que thérapeutes, à accuser l’anatomie : le problème vient des tissus (c’est votre articulation, votre muscle, votre biomécanique…).

Avec cette métaphore, Diane Jacobs propose d’innocenter les tissus et d’« incriminer», à la place, la moëlle épinière.

Je trouve l’idée plutôt sympathique et intéressante dans un « modèle interacteur » au sein duquel patient et thérapeute inter-agissent dans un processus à but thérapeutique visant la douleur et la fonction du système nerveux.

Au lieu d’être dans un « modèle opérateur » où le corps est un objet dont on corrige les défauts anatomiques.

Cela peut permettre de concevoir notre imposition des mains d’une autre manière.

Voici un exemple concret, parmi tant d’autre, de la façon de faire la même chose mais avec une vision différente.

La manipulation articulaire rachidienne dans le modèle opérateur :

Le thérapeute trouve une zone de « dysfonction somatique » en relation avec le motif de consultation douloureux et décide que pour enlever le symptôme il faut « débloquer », « corriger », « ajuster » cette dysfonction.

Sa seule option est ici de corriger cette « dysfonction somatique ». Dans cette situation, il faudra bien qu’elle « passe cette vertèbre », indépendamment du patient.

Même si celui-ci a mal (ou appréhende) et se raidit lors de l’acte manipulatif, dérangeant ainsi le praticien dans le bon déroulement de sa technique.

Plusieurs cas de figure peuvent apparaître dans cette situation :

  • Le thérapeute s’y reprend à plusieurs fois en irritant le système nerveux du patient;
  • Le thérapeute incrimine le patient en lui demandant de se détendre;
  • Le thérapeute incrimine la dysfonction , celle ci est « trop bloquée » (et participe à la croyance négative fragilisant le patient);
  • Le thérapeute peut être déçu si cela ne passe pas, et croire que, comme sa manipulation est ratée, il a échoué et ne peut rien faire pour le patient;
  • Et dans le pire des cas la « manipulation passe » (avec un peu d’effort) et malgré tout le patient est plus douloureux. Que faire ?

 

Voici une autre façon d’aborder la manipulation articulaire rachidienne dans un modèle interacteur :

Le thérapeute trouve une zone de « dysfonction somatique » en relation avec le motif de consultation douloureux et pense que la manipulation de cette zone pourrait aider le patient a bouger mieux avec moins de douleur.

Au moment de faire la manipulation, le patient se raidit. Le thérapeute, dans ce modèle interacteur, est dans une écoute attentive.

Il peut comprendre que le système d’alarme est sensibilisé et qu’il se protège par tous les moyens (incluant le réflexe de retrait médullaire indépendant d’une réaction consciente du patient).

Le thérapeute respecte la réponse du système nerveux et trouve une autre approche qui permettra au patient et au thérapeute de se sentir mieux.

Les neurosciences nous ouvre un champ de possible très vaste grâce à la compréhension de certains mécanismes neurophysiologiques impliquées dans la douleur.

Et pour calmer la sensibilisation du système nerveux il y a une infinité d’options, le TOUCHER en est une fantastique. Je vous laisse cette phrase de mon cousin Erwann* (sortie d’une de nos  discussions sur le toucher) qui pourrait résumer génialement les travaux de Sapolsky sur le Social Grooming  et sur l’intéroception (Craig 2009).

« Un des tout premiers rapport social qu’un sapiens puisse recevoir et sur lequel il bâtit sa sécurité et donc sa physiologie c’est le TOUCHER…300000 ans d’expérience tactile inconsciente menant a des mécanismes neurophysiologiques (neurotags?) ancrés dans notre humanité ».

Cette option est puissante du moment que nos mots et notre façon de penser ne la détourne pas en une arme contre productive fragilisant nos patients…

Si vous souhaitez aller plus loin dans les neurosciences de la douleur un elearning d’une dizaine d’heure de cours est aussi disponible ici en Français

 

 

 

 

 

 

*c’est mon cousin ostéo du Cap qui puise son inspiration dans l’interaction avec l’océan

Neurophysiologie au cabinet, Chapitre 2/2  : Nociception, Sensibilisation, Douleur

Sans titre.png

Ce chapitre est dense : il explique les bases de la compréhension nociception / douleur. Il essaye de résumer et simplifier le schéma ci-dessus (que j’ai mis pour les geek de neurophysio !!)

Il fait suite au chapitre introductif « La douleur n’est pas synonyme ni de lésion tissulaire, ni de nociception »

Quand on regarde les exemples du chapitre précédent on comprend donc que les axiomes suivants sont essentiels à intégrer dans notre pratique clinique (L. Moseley, Painfull Yarns) :

  • « La nociception n’est ni nécessaire ni suffisante pour que la douleur existe »
  • « La quantité de douleur dont vous faites l’expérience n’est pas forcément proportionnelle aux dommages tissulaires, elle dépend de combien votre corps croit que vous êtes en danger »

Pour comprendre un peu plus en détails et maitriser ces concepts voici un bout de neuroscience de la douleur et de neurophysiologie.

Sont abordés ci dessous la nociception, la sensisibilisation périphérique, la sensibilisation centrale, la modulation et la douleur.

La nociception correspond à l’activité dans les fibres nociceptives (Aδ et C).

La sensibilisation, c’est l’augmentation du volume de cette activité, elle peut être périphérique (nocicepteurs ou sur le trajet du nerf) ou centrale (médullaire ou corticale) (ci-dessous)

sensibilisation volume

NOCICEPTION EN DETAIL : des nocicepteurs jusqu’au cortex

Schéma global nociception


La nociception
est un processus d’encodage neural d’un stimulus nociceptif et de sa transmission du corps vers le cerveau : il correspond à l’activité des fibres afférentes à haut seuil de stimulation (Aδ et C) et de leur projection.

En plus simple la nociception c’est le processus de détection d’une menace et la transmission du message de danger vers le cerveau.

Ce processus ce déroule en plusieures étapes :

I-Phase de détection d’une menace (Premier nocicepteur):

Les « clochettes à danger », ou nocicepteurs sont des terminaisons nerveuses libres. Elles réagissent à la stimulation d’un danger potentiel :

clochette

  • Mécanique (EnaC) : changement de pression des tissus (coup, pincement, étirement, coupure, piqure …);
  • Chimique (ASIC) : changement de pH (inflammation, adrenaline, acide lactique..);
  • Thermique  (TRPV): changement de température.

Nocicepteurs moléculaire

Une fois la « clochette » stimulée, elle dépolarise la membrane (ouverture de canaux ioniques) du nerf dans laquelle elle est enfouie et transforme son message en influx électrique  : c’est la transduction.

Depolarisation

2. transmission

Puis il transmet cet influx électrique le long du premier nocicepteur  ; c’est la transmission.

Le message nociceptif se transmet  dans les fibres Aδ et C :

  • Les fibres C réceptionnent l’information des nocicepteurs polymodaux (chimique, thermique, mécanique) et thermiques (chaud et brûlure)
  • Les fibres Aδ réceptionnent l’information des nocicepteurs mécaniques (piqûre, pincement, torsion), et thermiques (froid)

terminaison libreCes fibres sont peu ou pas myélinisées et de petit calibre. La vitesse de transmission est beaucoup plus lente (0,5 à 40 m/s) que celle des fibres Aα (80-120m/s) qui véhiculent la proprioception ou les Aβ (40-90m/s) qui véhiculent le tact fin :

Fibres et vitesses

 

Ces fibres nerveuses arrivent dans la corne postérieure de moelle dans des couches bien individualisées, afin de traiter spécifiquement l’information entrante.

corne postérieur moelle

II- La Sensibilisation Périphérique ou  Augmentation potentielle de la menace dans les tissus.

La définition est la suivante :

« Réactivité augmentée des neurones nociceptifs en périphérie et diminution de leur seuil d’excitation à la stimulation de leurs champs réceptifs. » Woolf 2011

Cela veut tout simplement dire augmentation du volume : pour un même message d’intensité identique, celui ci sera amplifié dans le temps et dans l’espace.

Plusieurs phénomènes et systèmes peuvent sensibiliser les « clochettes à danger »

  1. La soupe inflammatoire

Lors d’une lésion et/ou une inflammation, les cellules sanguines libèrent une « soupe périphérique » de substances chimiques (histamine, prostaglandine, bardikinine…) interagissant entre elles et sensibilisant les nocicepteurs. Ce processus est responsable de l’hyperalgésie primaire.

soupe infla
SLUKA K. 2009

Exemple d’hyperalgésie primaire : 

Quand vous allez sur la plage et que vous restez longtemps au soleil. Les rayons du soleil stimulent vos nocicepteurs thermiques (si vous ne mettez pas d’écran total) pour vous prévenir de vous protéger. Si vous restez trop longtemps au soleil, votre peau va brûler, c’est le coup de soleil. Du coup pour réparer vos tissus le corps produit une inflammation, celle ci va rendre plus sensible votre peau le temps de la réparation, et donc les stimulus thermiques non douloureux en tant normal, le seront : si vous prennez une douche, l’eau chaude vous redéclenchera la douleur. C’est l’hyperalgésie primaire.

  1. Le reflexe d’axone : La stimulation des nocicepteurs remonte au ganglion dorsal spinal, celui ci peut produire en réponse des neuropeptides (substance P et CGRP) qui sensibilisent en périphéries les nocicepteurs (les clochettes sont resensibilisée par le centre!!)

3.reflexe axone

  1. Le système nerveux sympathique :

4.sympathique

Sensibilisation sympathique

3.1 Activation des nocicepteurs silencieux : par reflexe de la première stimulation nociceptive le système sympathique peut, aider à recruter des neurones non excités directement (neurones silencieux (« S ») ), augmentant l’information nociceptive.

3.2 Le « réflexe sympathique » va aussi en périphérie augmenter la vaso-dilatation et donc l’extravasion de bradykinine (BK) qui a un rôle dans la sensibilisation des nocicepteurs et dans l’inflammation.

Tous ces phénomènes augmentent la taille du champ réceptif de l’information nociceptive initiale (wind-up), quand vous vous piquez, la zone douloureuse s’étend autour de la piqûre:

champ receptif

III- Le message nociceptif atteint la moelle et rencontre le deuxième nocicepteur :

La transmission du message nociceptif entre les deux nerfs se fait dans la corne dorsale de la moelle.

5.Corne post

Les fibres nociceptives (C et Aδ) communiquent avec un deuxième neurone. Celui ci peut être spécifique à la nociception ou non spécifique. C’est le cas des neurones WDR (Wide Dynamic Range, pour neurone à large gamme dynamique) qui reçoivent les informations des fibres Aβ, Aδ et C. Ils sont à l’origine de l’allodynie.

Ce passage de relais est modulée (voir chapitre 1 théorie de la porte) :

  • Le message peut être accentué, par plusieurs facteurs, comme par exemple la facilitation descendante ou bien la sensibilisation centrale ;
  • Le message peut être diminué, entre autre, par l’inhibition descendante, ou l’activité dans les grosses fibres myélinisées.

Il existe plus de 400 neurones controlant le passage de l’information entre le premier neurone et le second neurone.

Sur site il existe des cellules non-neurales (microglie astrocyte) libérant des neurotransmetteurs excitateurs ou inhibiteurs modulant ce passage.

3.1 Modulation endogène excitatrice : Sensibilisation centrale et facilitation descendante

3.1.1 La facilitation descendante s’explique par la libération de cholécystokinine (CCK) ou de monoxyde d’azote (NO) par les neurones descendant à la jonction entre le premier et le deuxième neurone.

Dans ce cas l’information en provenance de la fibre C sera amplifiée par le WDR

6. Faciliatation 

3.1.2 La sensibilisation centrale

La définition officielle de l’ IASP est la suivante : « Réactivité accrue des neurones nociceptifs dans le système nerveux central face à des stimuli normaux ou inferieurs à leur seuil d’activation. »

Je préfère celle de Smart et al 2010 : « Amplification du signal neurologique au niveau du système nerveux central générant une hypersensibilisation », car cette définition reprend l’idée de volume augmenté.

Cela peut se produire par un certain nombre de mécanismes  qui s’expliquent par une plasticité médullaire, s’adaptant aux stimuli afférents, ou à des informations descendantes (facilitation descendante par libération de CCK).

Ces mécanismes variés sont les suivants :

  • Les canaux NDMA et AMPA sont augmentés (figure ci-dessus sur la facilitation);
  • La substance P augmente et est libérée en périphérie et sensibilise la périphérie (diminution des seuils et wind-up, un peu comme dans le réflexe d’axone ci-dessus);
  • Il existe des bourgeonnements (sprouting) entre les différentes couches de la corne postérieure de moelle, ce qui perturbe le traitement de l’information et qui peut stimuler la zone intermédiolatérale (orthosympathique):

corne post moelle sprouting

  • La microglie (en marron dans la figure ci-dessous) active et stimule le second neurones (WDR en orange) en libérant des neurotransmetteurs exitateurs (NO, apsartate, Glutamate, figure ci-dessus)
  • Disinhibition : c’est la mort des neurones inhibiteurs (en vert dans la figure ci-dessous), aussi bien de ceux sur site, que les descendants.
Se centrale new
Baron 2006, à droite corne postérieure de moelle zoomée, en orange le WDR, en marron la microglie, en vert l’inhibition descendante et les cellules inhibitrices, en rouge les fibres C, en bleu les fibres Abeta et Adelta

Cette plasticité modifiée devient un relais actif d’augmentation du signal nociceptif : le seuil d’activation des neurones diminue (il devient plus facilement excitable) et le champ réceptif augmente (la zone de surveillance s’étale).

Elle explique l’allodynie et l’hyperalgésie secondaire (voir image ci-dessous) :

  • Hyperalgésie : Pour un stimulus nociceptif de faible intensité, le cerveau perçoit trop de douleur.
  • Allodynie : Pour un stimulus non nociceptif (la plume), le WDR transmet une information nociceptive qui sera traduit en douleur. Le cerveau confond la plume et le chalumeau.

SE central allodynie hyperalgésieSi la majeure partie de la littérature se concentre sur les changements physiologiques dans la moelle épinière, il a également été démontré des changements de traitement sensoriel supra-spinale avec des augmentations de l’activité cérébrale dans le cortex cingulaire antérieur, l’insula et le cortex préfrontal.

Se centrale cortex

3.2 Modulation endogène inhibitrice

Heureusement la modulation inhibitrice existe. Elle permet de diminuer le signal.

Il y a plusieurs mécanismes pouvant activer cette inhibition.

  • Le gate contrôle (voir chapitre 1) : les fibres de gros calibre (Aβ) sont prioritaires au passage dans la corne postérieure par rapport aux des fibres nociceptives, quand vous vous cognez, si vous frottez la douleur diminue ;theorie-porte-modifiee
  • La modulation conditionnée de la douleur (ancien CIDN) : une stimulation nociceptive peut en inhiber une autre. Cela passe par l’activation de la substance grise périaqueducale (SGPA) et la moelle rostro ventrale, qui stimule les voies serotoninergique et noradrénergique ;

CID

  • L’inhibition descendante : elle provient de contrôle supra corticaux, elle est associée à des phénomènes centraux plus complexes (analgésie placebo, hypnose, focus externe…). Le cortex cingulaire, cortex préfrontal dorsolatéral, l’amygdale, l’insula y participent. Les neurones descendants libèrent des endorphines (GABA …) qui ralentit le passage de l’information nociceptive dans le WDR.

8.Inhibition

Ces libérations de neurotransmetteur inhibiteur sont 18 à 33 fois plus efficaces que les drogues de synthèses : gratuit, sans ordonnance et sans effet secondaire (Loh et al 1976).

ET LA DOULEUR ?

C’est un mélange subtile de nociception, sensibilisation (périphérique/centrale) facilitation, inhibition, dishinibition, et surtout d’un CODAGE PRÉDICTIF CORTICAL*  de l’information nociceptive et non-nociceptive (Iannetti et Moureaux 2010).

C’est le système d’alarme tout entier.

Ben Cormack donne cette métaphore, la nociception, c’est le voyant qui s’allume quand vous n’avez plus d’essence, il vous informe du danger de la panne d’essence.

Le niveau de douleur est similiare à la réaction que vous allez avoir face à ce voyant allumé :

  • Certains d’entre vous vont se dire, ce n’est pas grave, et le voyant vous n’y ferez pas attention, mais vous aller gérer le fait de trouver une station pour refaire le plein ;
  • D’autre, en fonction de leur stress actuel, de leur expérience passée (si vous êtes déjà tombé en panne), de l’endroit paumé dans lequel vous êtes sans station essence, vous allez réagir et ne porter votre attention que sur le voyant (hypervigilence, catastrophisation).
  • Et certains ne verront même pas le voyant (ceux qui continuent malgré la douleur) et tomberont en panne.

Lorimer Moseley donne une définition différente de celle de l’IASP :

« La douleur une expérience émergente consciente qui sert à susciter une réponse comportementale de protection vis à vis de tous les éléments de preuve plausible de menace. »

Lorsqu’on a mal, cela signifie que le corps a répondu plusieurs questions : quelle est la meilleure situation que je puisse de te proposer pour que tu agisses de façon cohérente en ce moment ?

Avant de répondre à cette question, le cerveau a scanné auparavant tous les systèmes du corps (immunitaire, endocrinien, cardiaque, digestif, autonome…) et les a déjà sollicité pour essayer de nous donner les meilleures options possibles.

Quand il estime qu’il faut faire quelque chose de plus, il nous envoie le signal la douleur. Ce système de codage prédictif est expliqué par les mathématiciens et les neuropsychologues (Friston 2012) qui ont défini le modèle du cerveau bayesien.

Le cerveau fait des maths, des probabilités inversées plus exactement (on appelle cela des inférences) : en fonction de toutes les informations qu’il reçoit de tous les systèmes, ils les échantillone dans la moelle, puis les scrute, les processe, les code et enfin il nous donne la perception de ce qu’il estime être le choix le plus approprié dans notre situation (M. Thacker parle de « Best Guess »)

Notre perception (de la douleur entre autre) n’est qu’une illusion d’un codage d’informations en provenance de notre environnement et de tout notre corps. Les meilleurs exemples de perceptions sont les illusions optiques. Ma préférée est la suivante (Anderson B. et Winawer Nature 2005)  :

9. illusion 1

Sur cette image on distingue clairement les pièces d’échecs blanches en haut et noir au dessous.

Sauf que si on modifie le fond sur lequel les pièces d’échecs sont posées voici ce que cela donne :

10.illusion 2

Ce sont exactement les mêmes pièces !!! Et même en le sachant maintenant, vous pouvez regarder l’image précédente vous serez incapables de voir que ces pièces sont les mêmes, votre perception vous donne des pièces blanches en haut et noirs en bas.

Les entrées visuelles de luminosité sont intégrées et codées, votre perception ne reflète absolument pas la mesure de la luminosité. Pour la douleur c’est la même chose, elle ne reflète pas de la mesure des dégats de votre organisme, ni même de combien de nocicepteurs sont impliqués.

Ce calcul mathématique fonctionnel que fait nos neurones, a été modélisé par S. Dehaene le définissant comme l’espace de travail neuronal global :

11. space Neuronal

Pour l’expérience consciente de la douleur, L.Moseley a simplifié cet embrasement de la neuromatrice (voir chapitre précédent), et l’a appelé Neurotag. Quand ce schéma s’allume dans le cerveau, il PRODUIT une expérience de douleur :

DOuleur

Gifford avait 10 ans d’avance et avait déjà proposé ce modèle de codage prédictif dans son Modèle de l’organisme mature (schéma ci-dessous traduit modifié et adapté de Gifford 1998 puis Puentedura et Louw 2012 ) :

13 Gilford modifié

Le système nerveux centrale analyse tous les signaux minutieusement :

Expériences passées : qu’est ce qui s’est passé en rapport au contexte de cette douleur auparavant (je suis resté bloqué 3 semaines  la dernière fois ?)

L’état émotionnel : l’anxiété, la peur de la douleur, la dépression…

Notre comportement : l’attention constante sur la douleur, la colère qu’elle génère, l’évitement du mouvement, la peur de bouger…

Nos croyances négatives :  » je suis asymétrique, dans ma famille c’est génétique , j’ai de l’arthrose c’est sans issue et cela ne fera que s’agraver, mon dos est fragile, je risque d’être paralysé « . Ces fausses idées nous laissent supposer que notre corps est fragile et que c’est une fatalité.

Nos expériences passées : « j’ai déjà eu mal au dos et la dernière fois c’était terrible, je ne veux pas revivre cela… »…

Notre environnement, notre état de fatigue, notre état de santé, notre sommeil, nos connaissances, notre culture, la représentation somatotopique corticale du Soi, le contrôle moteur (adaptatif et maladaptatif), les comportements bénéfiques passés dans des situations identiques observées chez nous ou chez les autres…

La production et la perception de DOULEUR nous permet de modifier notre comportement et notre physiologie.

C’est comme cela que des informations nociceptives, ne produiront pas forcément de douleur. Elles sont codées comme informations non importantes et le cerveau nous produit une perception de non douleur (Voir l’exemple de Betany Hilton la surfeuse dans l’artile précédent). Le meilleur choix pour Betany était de survivre, pas d’avoir mal.

A l’inverse des informations non-nociceptives pourront êtres codées et le cerveau nous produira la perception de douleur car il aura calculé que notre corps doit faire quelque chose pour changer la situation estimée comme dangereuse (l’exemple de l’ouvrier qui tombe sur le clou). Le meilleur choix est d’avoir mal (le clou dans la chaussure, lui dit d’aller tout de suite aux urgences).

Quels sont les messages clés de toutes ces informations dans notre pratique :

  • La nociception et la douleur sont deux phénomènes physiologiques différents, ils interagissent mais peuvent se produirent indépendamment :
      • La construction de l’expérience de la douleur (neurotag) repose sur de nombreux signaux sensoriels provenant pas uniquement des tissus (contexte, mémoire, raisonnement, émotion,vue, ouie, odorat,croyance..);
      • Cela fait mal quand le cerveau a décidé de quand et de où il considère qu’il y existe un problème, et pas nécessairement d’où vient vraiment le problème;
  • Quand un patient a mal, essayez de prendre en compte tous les signaux qui ont pu modifier ce codage prédictif (terrain, fatigue, sommeil, facteurs psycho-sociaux…), et qui expliquent l’entretien de sa douleur.
  • Nous avons une boite à pharmacie dans le corps qui module le système d’alarme, donc essayez d’utiliser les stratégies qui vont désensibiliser le patient :
    • en augmentant l’inhibition descendante
    • en diminuant la facilitation descendante
  • Banissez de votre discours  : douleur = lésion, blocage, dysfonction, asymétrie, déséquilibre, ils activent la facilitation descendante et la sensibilisation centrale !!!

Maintenant si vous souhaitez aller plus loin dans les neurosciences de la douleur un elearning d’une dizaine d’heure de cours est aussi disponible ici en Français

*Si il était impossible de ne pas parler du codage prédictif et du cerveau bayesien pour la douleur, un post spécial plus complet lui sera dédié plus tard.

REFERENCES (soulignées en gras les plus importantes):

  • Baron R. Mechanisms of Disease: neuropathic pain—a clinical perspective. Nature Clinical Practice 2006;2(2): 95-106
  • BUTLER, D. S., & Moseley. (2003). Explain pain. Adelaide: Noigroup Publications
  • GIFFORD L. Pain, the tissues and the nervous system : a conceptual model. Physiotherapy. 1998. 84(1):27-36.
  • Iannetti et Moureau. From the neuromatrix to the pain matrix (and back) Exp Brain Res 2010;205:1–12
  • Latremoliere A. Woolf C . Central Sensitization: A Generator of Pain Hypersensitivity by Central Neural Plasticity. The Journal of Pain 2009 ; 10(9): 895-926
  • Loh et al. Beta endorphin is a potent analgesic. Pro. Sci. Nat 1976. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC430793/
  • Ru-Rong Ji, Alexander Chamessian, Yu-Qiu Zhang Pain regulation by non-neuronal cells and inflammation Science04 Nov 2016 : 572-577
  • SLUKA K.A.,(2009). Mechanism and Managment of Pain for the Physical Therapist. IASP Press.
  • Smart KM, Blake C, Staines A, Doody C., 2010.Clinical indicators of ‘nociceptive’, ‘peripheral neuropathic’ and ‘central’ mechanisms of musculoskeletal pain. A Delphi survey of expert clinicians. Man Ther, 15, 80-87.
  • Woolf CJ. Central sensitization: Implications for the diagnosis and treatment of pain. PAIN.  152 (2011) S2–S15